On the Estimation of the Fundamental Matrix: A Convex Approach to Constrained Least-Squares

نویسندگان

  • Graziano Chesi
  • Andrea Garulli
  • Antonio Vicino
  • Roberto Cipolla
چکیده

In this paper we consider the problem of estimating the fundamental matrix from point correspondences. It is well known that the most accurate estimates of this matrix are obtained by criteria minimizing geometric errors when the data are aaected by noise. It is also well known that these criteria amount to solving non-convex optimization problems and, hence, their solution is aaected by the optimization starting point. Generally, the starting point is chosen as the fundamental matrix estimated by a linear criterion but this estimate can be very inaccurate and, therefore, inadequate to initialize methods with other error criteria. Here we present a method for obtaining a more accurate estimate of the fundamental matrix with respect to the linear criterion. It consists of the minimization of the algebraic error taking into account the rank 2 constraint of the matrix. Our aim is twofold. First, we show how this non-convex optimization problem can be solved avoiding local minima using recently developed convexiication techniques. Second, we show that the estimate of the fundamental matrix obtained using our method is more accurate than the one obtained from the linear criterion, where the rank constraint of the matrix is imposed after its computation by setting the smallest singular value to zero. This suggests that our estimate can be used to initialize non-linear criteria such as the distance to epipolar lines and the gradient criterion, in order to obtain a more accurate estimate of the fundamental matrix. As a measure of the accuracy, the obtained estimates of the epipolar geometry are compared in experiments with synthetic and real data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

Estimating the Fundamental Matrix via Constrained Least-Squares: A Convex Approach

ÐIn this paper, a new method for the estimation of the fundamental matrix from point correspondences is presented. The minimization of the algebraic error is performed while taking explicitly into account the rank-two constraint on the fundamental matrix. It is shown how this nonconvex optimization problem can be solved avoiding local minima by using recently developed convexification technique...

متن کامل

Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...

متن کامل

Estimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach

This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000